Binary Arithmetic: From Leibniz to von Neumann
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The Era of Leibniz

Gottfried Wilhelm Leibniz (1646-1716) is often described as the last universalist, having contributed
to virtually all fields of scholarly interest of his time, including law, history, theology, politics,
engineering, geology, physics, and perhaps most importantly, philosophy, mathematics and logic
[1, 9, 11]. The young Leibniz began to teach himself Latin at the age of 8, and Greek a few years
later, in order to read classics not written in his native language, German. Later in life, he wrote:

Before I reached the school-class in which logic was taught, I was deep into the historians
and poets, for I began to read the historians almost as soon as I was able to read at all,
and I found great pleasure and ease in verse. But as soon as I began to learn logic, 1
was greatly excited by the division and order in it. I immediately noticed, to the extent
that a boy of 13 could, that there must be a great deal in it [5, p. 516].

His study of logic and intellectual quest for order continued throughout his life and became a
basic principle to his method of inquiry. At the age of 20 he published Dissertatio de arte combi-
natoria (Dissertation on the Art of Combinatorics) in which he sought a characteristica generalis
(general characteristic) or a lingua generalis (general language) that would serve as a universal
symbolic language and reduce all debate to calculation. Leibniz maintained:

If controversies were to arise, there would be no more need of disputation between two
philosophers than between two accountants. For it would suffice to take their pencils
in their hands, to sit down to their slates, and to say to each other: ... Let us calculate
(14, p. 170].

The Leipzig-born scholar traveled extensively with diplomatic visits to Paris and London, and
extended trips to Austria and Italy to research the history of the House of Brunswick. The years
1672-1676 were spent in Paris in an attempt to persuade King Louis XIV (1638-1715) not to
invade Germany, but Egypt instead, although Leibniz was never granted an audience with the
French king. During this time in Paris, however, the young German became acquainted with
several of the leading philosophers of the day, acquired access to unpublished manuscripts of Blaise
Pascal (1623-1662) and René Descartes (1596-1650), and met the renowned Christiaan Huygens
(1629-1695), from whom he learned much about contemporary mathematics. During these years
he laid the foundation of his calculus and the core of what would become his philosophical legacy.

Leibniz’s invention of the differential and integral calculus is, in part, a product of his search
for a universal language. Questions in the calculus can be reduced to the rules of calculation which
the symbols for derivative, d, and integral, [, satisfy. Sadly a priority dispute with Isaac Newton
(1642-1727) over the invention of calculus cast a pall over Leibniz’s later years. Moreover, he
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became a subject of ridicule with his philosophy that this is the best of all possible worlds bitterly
satirized in Voltaire’s (1694-1778) play Candide.

Let’s turn to the universal genius’s 1703 publication “Explication de ’arithmétique binaire, qui
se sert des seuls caracteres 0 et 1, avec des remarques sur son utilité, et sur ce qu’elle donne le sens
des anciennes figures Chinoises de Fohy” [6, p. 223-227] (An Explanation of Binary Arithmetic
Using only the Characters 0 and 1, with Remarks about its Utility and the Meaning it Gives
to the Ancient Chinese Figures of Fuxi), which originally appeared in the journal Memoires de
I’Académie Royale des Sciences [13]. Here again, with the reduction of arithmetic to expressions
involving only zeroes and ones, we see a possible candidate for Leibniz’s characteristica generalis. Of
binary numeration, he writes “it permits new discoveries [in] ... arithmetic ... in geometry, because
when the numbers are reduced to the simplest principles, like 0 and 1, a wonderful order appears
everywhere.” Concerning the binary calculations themselves “ ... these operations are so easy that
we shall never have to guess or apply trial and error, as we must do in ordinary division. Nor do
we need to learn anything by rote.” Certainly Leibniz was not the first to experiment with binary
numbers or the general concept of a number base [7]. However, with base 2 numeration, Leibniz
witnessed the confluence of several intellectual ideas of his world view, not just the characteristica
generalis, but also theological and mystical ideas of order, harmony and creation [16]. Additionally
his 1703 paper [13] contains a striking application of binary numeration to the ancient Chinese text
of divination, the Yijing (I-Ching or Book of Changes).

Early in life Leibniz developed an interest in China, corresponded with Catholic missionaries
there, and wrote on questions of theology concerning the Chinese. Surprisingly he believed that he
had found an historical precedent for his binary arithmetic in the ancient Chinese lineations or 64
hexagrams of the Yijing. This, he thought, might be the origin of a universal symbolic language. A
hexagram consists of six lines atop one another, each of which is either solid or broken, forming a
total of 64 possibilities, while a grouping of only three such lines is called a trigram [coval. Leibniz
lists the eight possible trigrams in his exposition on binary arithmetic, juxtaposed with their binary
equivalents.

He had been in possession of his ideas concerning binary arithmetic well before his 1703 pub-
lication. In 1679 Leibniz outlined plans for a binary digital calculating machine, and in 1697 he
sent a congratulatory birthday letter to his patron Duke Rudolph August of Brunswick, in which
he discusses binary numeration and the related creation theme with 0 denoting nothing and 1
denoting God [16]. Furthermore, Leibniz sent the French Jesuit Joachim Bouvet (1656-1730) an
account of his binary system while Bouvet was working in China. The Jesuits are an educational
order of Catholic priests, who, while in China, sought the conversion of the Chinese to Christianity,
hopefully by the identification of an ancient theology common to both religions. Bouvet began a
study of the Yijing, viewing this text as the possible missing link between the two religions [16]. It
was from this Jesuit priest that Leibniz received the hexagrams attributed to Fuxi, the mythical
first Emperor of China and legendary inventor of Chinese writing. In actuality, the hexagrams
are derived from the philosopher Shao Yong’s (1011-1077) Huangji jingshi shu (Book of Sublime
Principle Which Governs All Things Within the World). Shortly after receiving Bouvet’s letter
containing the hexagrams and Bouvet’s identification of a relation between them and binary nu-
meration, Leibniz submitted for publication his 1703 paper “Explanation of Binary Arithmetic” [3,
p. 44].

Here is the first question of the student module:

1. Concerning the utility of the binary system, Leibniz cites an application to weighing masses.
Suppose that a two-pan balance is used for weighing stones. A stone of unknown (integral) weight
is placed on the left pan, while standard weights are placed only on the right pan until both sides
balance. For example, if standard weights of 1, 4, 6 are used, then a stone of weight 7 on the left



pan would balance the standard weights 1 and 6 on the right. Two standard weights with the same
value cannot be used. Leibniz claims that all stones of integral weight between 1 and 15 inclusive
can be weighed with just four standard weights. What are these four standard weights? Explain
how each stone of weight between 1 and 15 inclusive can be weighed with the four standard weights.
Make a table with one column for each of the four standard weights and another column for the
stone of unknown weight. For each of the 15 stones, place an “X” in the columns for the standard
weights used to weigh the stone.

Let’s now read from an “Explanation of Binary Arithmetic,” using a modified version of the
Ching-Oxtoby translation [3, p. 81-86].

An Explanation of Binary Arithmetic
Using only the Characters 0 and 1, with Remarks
about its Utility and the Meaning it Gives to the

Ancient Chinese Figures of Fuxi

By G.W. Leibniz

Ordinary arithmetical calculations are performed according to a progression of tens. We use
ten characters, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, that signify zero, one and the following
numbers up to nine, inclusive. After reaching ten, we begin again, writing ten with 10, and
ten times ten or one hundred with 100, and ten times one hundred or one thousand with
1000, and ten times one thousand with 10000, and so on.

2. Write the numbers 1, 10, 100, 1000 and 10000 as powers of ten. Express your answer in complete
sentences or with equations. What pattern do you notice in the exponents? (Question one appears
just before the excerpt from Leibniz).

But instead of the progression by tens, | have already used for several years the simplest of
all progressions, that by twos, having found that this contributes to the perfection of the
science of numbers. Thus | use no characters other than 0 and 1, and then, reaching two,
| begin again. This is why two is written here as 10, and two times two or four as 100, and
two times four or eight as 1000, and two times eight or sixteen as 1000, and so on.

3. Write the numbers 1, 2, 4, 8 and 16 as powers of two. Express your answer in complete sentences
or with equations. What pattern do you notice in the exponents? How do the exponents compare
with those in question 27 How does the progression by twos compare with the standard weights in
question 17

Here is the Table of Numbers according to this pattern, which we can continue as far as we
wish.

4. Compare the entries from 1 to 15 in Leibniz’s “Table of Numbers”on the following page with the
table for weighing stones that you constructed previously in question 1. Today a number written
only with the characters 0 and 1 according to Leibniz’s “progression of twos” is said to be written
in binary notation, or base 2. Find the binary equivalents of the (base 10) numbers

34, 64, 100, 1015.

Be sure to explain your work.



At a glance we see the reason for the famous property of the double geometric progression
in whole numbers, which states that given only one of these numbers in each degree, we can
form all other whole numbers below the double of the highest degree. Since, as we would
say, for example, 111 or 7 is the sum of four, two and one, and that 1101 or 13 is the sum
of eight, four and one.
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This property is useful to investigators for weighing all kinds of masses with just a few

weights or could be used in monetary systems to provide a range of change with just a few
coins.
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5. Using modern notation, Leibniz’s “double geometric progression” or “progression by twos” would
be written 20, 21, 2223 ... 2" Guess a simple formula for

based on Leibniz’s verbal description “that given only one of these numbers in each degree,” we
should be able to achieve all whole numbers “below the double of the highest degree.” Prove that
your guess is correct using only algebra (addition and multiplication). Hint: Multiply (20 4 2! +
22 423 4 ... 4 2") by 1, where 1 is written as 2 — 1.

Leibniz continues:

This expression of numbers, once established, facilitates all kinds of operations.

For example, addition (1)

1 1 0| 6 1 0 1] 5 1 1 1 014
1 1 1) 7 1 0 1 111 10 0 117
0 1]13 0 0 0 016 11 1 1] 31
For subtraction
1 1 0 1|13 1 0 0 0] 16 1 1.1 1 1|31
1 1 1) 7 1 0 1 111 10 0 117
1 1 0 6 1 0 1] 5 1 1 1 014
For multiplication (2)
1 13 1 0 1] 5 1 0 1] 5
1 13 1 1) 3 1 0 1] 5
1 1 1 01 1 01
11 1 01 1 010
1 0 0 19 1 1 1 1|15 1 1 .0 0 125
For division
15 1 1 0 15

A A1
3|4 A4 A1
A 1

All these operations are so easy that we shall never have to guess or apply trial and error, as
we must do in ordinary division. Nor do we need to learn anything by rote here, as must be
done in ordinary calculation, where, for example, it is necessary to know that 6 and 7 taken
together makes 13, and that 5 multiplied by 3 gives 15, following the so-called Pythagorean
table! that one times one is one. But here everything is found and proven from the source,
just as we see in the preceding examples under the signs (1) and (2).

! This is likely a reference to the multiplication table.



6. Using your knowledge of base 10 addition, explain the examples of base 2 addition given above
by Leibniz. What is the likely meaning of the dot Leibniz includes in certain columns for addition?
Using binary arithmetic, compute 1101 4 1110, without converting these numbers to base 10.
Explain the examples for binary subtraction, multiplication and division above. Keep in mind
that these should be base 2 analogues of base 10 procedures. Since Leibniz’s example for division
may be incomplete by today’s standards, you may wish to supplement his work with additional
steps, indicating clearly what multiples of 3 are subtracted from 15 in base 2. Finally, using binary
arithmetic, compute the following.

11010 — 1101, (1101) - (11), 1101 =+ 101.

Be sure to explain your work. For the division problem, you may state what the remainder is in
terms of a binary whole number, without writing it as a fraction.

However, | am not at all recommending this manner of counting as a replacement for the
ordinary practice of tens. For aside from the fact that we are accustomed to this, there is no
need to learn what we have already memorized; the practice of tens is shorter, the numbers
not as long. If we were accustomed to proceed by twelves or by sixteens, there would be even
more of an advantage. As compensation for its length, however, calculation by twos, that
is by 0 and by 1, is most basic for science; it permits new discoveries which become useful
even in the practice of arithmetic, and especially in geometry, because when the numbers
are reduced to the simplest principles, like 0 and 1, a wonderful order appears everywhere.
For example, even in the Table of Numbers, we see in each column those periods which
always reappear. In the first column it is 01, in the second 0011, in the third 00001111, in
the fourth 0000000011111111, and so on. Small zeroes are put into the table to fill the void
at the beginning of the column, and to mark these periods better. Lines are also traced in
the table indicating that what these lines enclose always reoccurs below them. The square
numbers, cubes and other powers, as well as the triangular numbers,? pyramidal numbers,3
and other figurate numbers, also have similar periods, so that one can immediately write the
tables without even calculating. A certain tedium at the beginning, which later serves to
spare us calculation and to allow us to go by rule infinitely far, is extremely advantageous.

What is surprising in this calculation is that this arithmetic of 0 and 1 contains the mystery
of lines of an ancient king and philosopher named Fuxi, who is believed to have lived more
than four thousand years ago and whom the Chinese regard as the founder of their empire
and of their sciences. There are several figures of lines that are attributed to him; they all
go back to this arithmetic. But it is enough to place here the so-called figures of the eight
Cova [trigrams], which are basic, and to add to these an explanation which is manifest, so
that it is understood that a whole line — signifies unity or one, and that a broken line — —
signifies zero or 0.

2The sequence 1, 3, 6, 10, 15, ..., giving the number of dots in certain triangles [12, p. 49] forms the triangular
numbers.

3The sequence 1, 4, 10, 20, 35, ..., giving the number of dots in certain pyramids [19, p. 76] forms the pyramidal
numbers.
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... [S]carcely two years ago | sent to the Reverend Father Bouvet, the famous French Jesuit
living in Peking, my manner of counting by 0 and 1, and it was all he needed to recognize
that this holds the key to Fuxi's* figures. So he wrote to me on November 14, 1701, sending
me the great figure of this princely philosopher which goes to 64. ...

Although striking to Leibniz, the link between the 64 hexagrams of the Yijing and binary
numeration appears today as only an intellectual curiosity. The base two system did not provide a
common origin to Christianity and Confucianism, as Leibniz and Bouvet had sought.

The Electronic Age

John von Neumann (1903-1957) was a leading mathematician, physicist and engineer of the twen-
tieth century, having contributed significantly to the foundations of quantum mechanics, the de-
velopment of the atomic bomb, and the logical structure of the electronic digital computer [8, 10].
Born in Budapest Hungary, the young von Neumann showed a gift for mathematics, received a
doctorate in the subject from the University of Budapest and a degree in chemical engineering
from the Eidgendssische Technische Hochschule (Swiss Federal Polytechnic) in Zurich. He met the
renowned David Hilbert (1862-1943) on a visit to Gottingen in 1926, after which he was offered
the position of a Privatdozent (an un-salaried lecturer) at the University of Berlin and then at the
University of Hamburg. In 1930 he visited the United States, accepting a salaried lectureship at
Princeton University, a move which would shape the rest of his life.

Becoming a Professor of Mathematics at the prestigious Institute for Advanced Study (Prince-
ton, New Jersey) in 1933, von Neumann was able to devote his time to the study of analysis,
continuous geometry, fluid dynamics, wave propagation and differential equations. In 1943 he be-
came a member of the Los Alamos Laboratory and helped develop the atomic bomb. The particular
problem he faced, the implosion problem, was how to produce an extremely fast reaction in a small
amount of the uranium isotope U?3 in order to cause a great amount of energy to be released. In
conjunction with Seth Neddermeyer, Edward Teller and James Tuck, this problem was solved with
a high explosive lens designed to produce a spherical shock wave to cause the implosion necessary
to detonate the bomb. Von Neumann’s strength was his ability to model theoretical phenomena
mathematically and solve the resulting equations numerically [8, p. 181], which required adroit
skills in calculation.

Meanwhile in 1941 John William Mauchly (1907-1980), as a newly appointed Assistant Profes-
sor at the University of Pennsylvania’s Moore School of Electrical Engineering, began discussions
with graduate student John Presper Eckert (1919-1995) and others about the possibility of an elec-
tronic digital computing device that would be faster and more accurate than any existing machine,
designed in part to meet the computing needs of the Ballistics Research Laboratory (BRL) of the
Army Ordnance Department in Aberdeen, Maryland. With the help of mathematician and First

4The mythical first Emperor of China.



Lieutenant Herman Goldstine (1913-), Mauchly’s proposal for a high-speed vacuum-tube computer
received funding from the BRL in 1943. The device was dubbed the Electronic Numerical Integrator
and Computer (ENIAC). Tested in late 1945, and unveiled in 1946, the ENIAC was a behemoth
containing 18,000 vacuum tubes and requiring 1,800 square feet of floor space for the computer
alone [15, p. 133]. Arithmetic on the ENIAC was performed using the base 10 decimal system,
requiring the ability to store ten different values for each digit of a numerical quantity. The mul-
tiplication table for all digits between zero and nine was also stored on the machine. The ENIAC
was not programmable in the modern sense of a coded program, and contained no sub-unit similar
to a present-day compiler. To alter its function, i.e., to implement a different numerical algorithm,
external switches and cables had to be repositioned. Designs for a more robust machine may have
been in place as the ENIAC went into production, but the rush to meet the needs of the war effort
took precedence.

By serendipity, in the summer of 1944 Goldstine met von Neumann at a railway station in
Aberdeen, both working on separate highly classified projects. Goldstine writes: “Prior to that
time I had never met this great mathematician, but I knew much about him of course and had
heard him lecture on several occasions” [8, p. 182]. After a discussion of the computing power
of the ENIAC, von Neumann became keenly interested in this machine, and in late 1945 tested
it on computations needed for the design of the hydrogen bomb. Von Neumann quickly became
involved with the logical structure of the next generation of computing machinery, the Electronic
Discrete Variable Automatic Computer (EDVAC), designed around the “stored program” concept.
The instructions of an algorithm could be stored electronically on the EDVAC and then executed in
sequential order. In this way, von Neumann had outlined a “universal computing machine” in the
sense of Alan Turing (1912-1954), with the universal character referring to the machine’s ability
to execute any algorithmic procedure that could be reduced to simple logical steps. Turing first
introduced a logical description of his universal computing machine in 1936 [17] as the solution to
a problem posed by David Hilbert. Von Neumann, who had studied logic early in his career, was
certainly aware of Turing’s work, and in 1938 had offered Turing an assistantship at the Institute
for Advanced Study [8, p. 271]. In 1945 von Neumann issued his white paper “First Draft of a
Report on the EDVAC” [18] under the auspices of the University of Pennsylvania and the United
States Army Ordnance Department. Although this draft was never revised, the ideas therein soon
became known as von Neumann architecture in computer design. Let’s read a few excerpts from
this paper [18] related to binary arithmetic.

First Draft of a Report on the EDVAC

2.2 First: Since the device is primarily a computer, it will have to perform the elementary
operations of arithmetic most frequently. There are addition, subtraction, multiplication and
division: 4, —, X, =. It is therefore reasonable that it should contain specialized organs
for just these operations. At any rate a central arithmetical part of the device will probably
have to exist, and this constitutes the first specific part: CA.

4.3 It is clear that a very high speed computing device should ideally have vacuum tube
elements. Vacuum tube aggregates like counters and scalers have been used and found
reliable at reaction times (synaptic delays) as short as a microsecond ( = 10~ seconds).

5.1 Let us now consider certain functions of the first specific part: the central arithmetical
part CA.



The element in the sense of 4.3, the vacuum tube used as a current valve or gate, is an all-
or-none device, or at least it approximates one: According to whether the grid bias is above
or below cut-off; it will pass current or not. It is true that it needs definite potentials on all
its electrodes in order to maintain either state, but there are combinations of vacuum tubes
which have perfect equilibria: Several states in each of which the combination can exist
indefinitely, without any outside support, while appropriate outside stimuli (electric pulses)
will transfer it from one equilibrium into another. These are the so called trigger circuits,
the basic one having two equilibria. The trigger circuits with more than two equilibria are
disproportionately more involved.

Thus, whether the tubes are used as gates or as triggers, the all-or-none, two equilibrium
arrangements are the simplest ones. Since these tube arrangements are to handle numbers
by means of their digits, it is natural to use a system of arithmetic in which the digits are
also two valued. This suggests the use of the binary system.

5.2 A consistent use of the binary system is also likely to simplify the operations of multi-
plication and division considerably. Specifically it does away with the decimal multiplication
table. In other words: Binary arithmetic has a simpler and more one-piece logical structure
than any other, particularly than the decimal® one.

7. Let a and b denote binary variables with one digit each. Using only the logical connectives A
(and), V (or) and ~ (not), find a logical expression which gives the digit in the ones place (the
right-hand digit) of a + b. Find a logical expression which gives the digit in the twos place (the
left-hand digit) of a 4+ b. Explain your answer.

Extra Credit A: Find a pattern in the binary representation of the square numbers 1, 4, 9, 16, 25,
... . Leibniz claims to have found such patterns.

Extra Credit B: If in question 1 of the main project, standard weights can be placed on both sides
of the balance, what four standard weights should be used in order to weigh all stones of integral
weight between 1 and 40 inclusive?

Notes to the Instructor

The project is ideal for a beginning-level discrete mathematics or computer programming course. It
could be assigned independently or in conjunction with the project “Turing Machines and Binary
Addition,” available from the web resource [2]. After completion of the project, the instructor may
wish to lead the class in the discovery of divisibility properties of integers that become apparent
after studying their expression in binary form. The pattern of zeroes in the base two expansion
of the perfect squares leads to the conjecture that 8|(n? — 1), n an odd integer, where the vertical
bar denotes “divides.” In this way, the class is following in Leibniz’s footsteps when he claims that
“calculation by twos ... is most basic for science; it permits new discoveries, ..., because when the
numbers are reduced to the simplest principles, like 0 and 1, a wonderful order appears everywhere”
[13].
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